Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Parasitol Int ; 100: 102868, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38387679

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) deficiency is one of the most common X-linked hereditary disorders worldwide. G6PD deficiency provides resistance against severe malaria, but paradoxically, G6PD deficiency is also a stumbling block in fighting against malaria. Primaquine (PQ), a drug for the radical cure of Plasmodium vivax, can cause lethal acute hemolytic anemia in malaria patients with inherited G6PD deficiency. In this study, we analyzed the phenotypic and genotypic G6PD deficiency status in 1721 individuals (963 males and 758 females) residing in three malaria-endemic areas within the Gia Lai province, Vietnam. The G6PD activity in individuals ranged from 3.04 to 47.82 U/g Hb, with the adjusted male median (AMM) of 7.89 U/g Hb. Based on the G6PD activity assay results, no phenotypic G6PD deficiency was detected. However, the multiplex polymerase chain reaction to detect G6PD variations in the gene level revealed that 26 individuals (7 males, 19 females) had Viangchan mutations (871 G > A). Sequencing analyses suggested that all the males were hemizygous Viangchan, whereas one was homozygous, and 18 were heterozygous Viangchan in females. These results suggested a relatively low prevalence of G6PD deficiency mutation rate (1.51%) in the minor ethnic populations residing in the Gia Lai province, Vietnam. However, considering these areas are high-risk malaria endemic, concern for proper and safe use of PQ as a radical cure of malaria is needed by combining a G6PD deficiency test before PQ prescription.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria, Vivax , Malaria , Female , Humans , Male , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase Deficiency/genetics , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/therapeutic use , Prevalence , Vietnam/epidemiology , Primaquine/therapeutic use , Malaria/drug therapy , Malaria, Vivax/epidemiology , Malaria, Vivax/drug therapy , Antimalarials/adverse effects
2.
Malar J ; 22(1): 183, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37312220

ABSTRACT

BACKGROUND: Gabon is a malaria-threatened country with a stable and hyperendemic transmission of Plasmodium falciparum monoinfection. Malaria drug resistance is widely spread in many endemic countries around the world, including Gabon. The molecular surveillance of drug resistance to antifolates and artemisinin-based combination therapy (ACT) is one of the strategies for combating malaria. As Plasmodium parasites continue to develop resistance to currently available anti-malarial drugs, this study evaluated the frequency of the polymorphisms and genetic diversity associated with this phenomenon among the parasites isolates in Gabon. METHODS: To assess the spread of resistant haplotypes among the malaria-infected population of Libreville, single nucleotide polymorphisms linked to sulfadoxine-pyrimethamine (SP) and artemisinin drugs resistance were screened for P. falciparum dihydrofolate reductase (Pfdhfr), P. falciparum dihydropteroate synthase (Pfdhps), and P. falciparum kelch 13-propeller domain (Pfk13) point mutations. RESULTS: The analysis of 70 malaria-positive patient samples screened for polymorphism showed 92.65% (n = 63) mutants vs. 7.35% (n = 5) wild parasite population in Pfdhfr, with high prevalence mutations at S108N(88.24%, n = 60), N51I(85.29%, n = 58), C59R(79.41%, n = 54); however, I164L(2.94%, n = 2) showed low frequency mutation. No wild haplotype existed for Pfdhps, and there were no mutations at the K540E, A581G, and A613T/S positions. However, the mutation rate at A437G(93.38%, n = 62) was the highest, followed by S436A/F(15.38%, n = 10). A higher frequency of quadruple IRNI-SGKAA (69.84%) than quintuple IRNI-(A/F)GKAA (7.94%) mutations was observed in the Pfdhfr-Pfdhps combination. Furthermore, none of the mutations associated with ACT resistance, especially those commonly found in Africa, were observed in Pfk13. CONCLUSIONS: High polymorphism frequencies of Pfdhfr and Pfdhps genes were observed, with alternative alanine/phenylalanine mutation at S436A/F (7.69%, n = 5) for the first time. Similar to that of other areas of the country, the patterns of multiple polymorphisms were consistent with selection owing to drug pressure. Although there was no evidence of a medication failure haplotype in the studied population, ACT drug efficacy should be regularly monitored in Libreville, Gabon.


Subject(s)
Artemisinins , Folic Acid Antagonists , Malaria, Falciparum , Malaria , Humans , Gabon/epidemiology , Malaria, Falciparum/epidemiology , Polymorphism, Single Nucleotide
3.
Parasites Hosts Dis ; 61(1): 24-32, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37170461

ABSTRACT

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the polymorphic var multigene family, is a highly polymorphic antigen that plays a crucial role in the pathology of malaria. The contribution of the genetic diversity of var toward the immune escape of P. falciparum has not yet been fully elucidated. This study aimed to characterize the diversity of var repertoires by screening P. falciparum Duffy-binding-like α domain (PfDBLα) among field isolates from central Myanmar. Genetic analysis revealed that the D-H segments of var in Myanmar populations have an extensive polymorphic repertoire, with high numbers of unique sequence types in each individual. However, var genes from the global population, including Myanmar, shared close genetic lineages regardless of their geographic origins, indicating that they have not undergone rapid evolutionary changes.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Humans , Plasmodium falciparum/genetics , Genetic Variation/genetics , Myanmar , Malaria, Falciparum/epidemiology , Membrane Proteins/genetics , Erythrocytes
4.
Parasites Hosts Dis ; 61(2): 154-162, 2023 May.
Article in English | MEDLINE | ID: mdl-37258262

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is caused by X-linked recessive disorderliness. It induces severe anemia when a patient with G6PD deficiency is exposed to oxidative stress that occurs with administration of an antimalarial drug, primaquine. The distribution of G6PD deficiency remains unknown while primaquine has been used for malaria treatment in Myanmar. This study aimed to investigate the prevalence of G6PD deficiency and its variants in Chin State, Myanmar. Among 322 participants, 18 (11 males and 7 females) demonstrated a G6PD deficiency. Orissa variant was dominant in the molecular analysis. This would be related to neighboring Indian and Bangladeshi population, in which Orissa variant was also reported as the main mutation type. The screening test for G6PD deficiency before primaquine treatment appears to be important in Myanmar.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Female , Humans , Male , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Myanmar/epidemiology , Prevalence , Primaquine/adverse effects , Primaquine/therapeutic use
5.
Parasit Vectors ; 15(1): 404, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36329533

ABSTRACT

BACKGROUND: The Babesia microti-like parasite is an emerging tick-borne piroplasm that has been detected in a range of hosts worldwide. Babesia vulpes, which is found in dogs and foxes, has been reclassified from B. microti-like parasites. The relationships among these B. microti-like parasites and B. vulpes with respect to host range and geographical origin have not been elucidated. METHODS: Blood samples were collected from 27 raccoon dogs in South Korea and used to screen for B. microti-like parasites based on a PCR assay targeting the 18S rRNA gene of Babesia. For comparative purposes, in addition to 18S rRNA sequences from nine raccoon dogs, we also analyzed 18S rRNA sequences from B. microti-like parasites infecting hosts in different geographical regions worldwide obtained from the GenBank database, giving 123 sequences in total. The genetic variation and evolutionary relationships among these sequences were examined based on analyses using DnaSP, MEGA, Arlequine, and BEAST software. RESULTS: Babesia microti-like parasites were identified in nine raccoon dogs and found to be related to B. vulpes obtained from Spanish dogs. Among the 123 sequences from 14 countries and various hosts, we identified 43 haplotypes with high genetic variance. Based on the genetic variance and phylogenetic analyses, we established that the B. microti-like parasites isolated in different geographical regions and from hosts belonging to five orders showed higher among-population variation than within-population variation. Babesia vulpes parasites infecting carnivore hosts, including raccoon dogs, foxes, skunks and dogs, appear to be genetically distinct from B. microti-like parasites infecting hosts belonging to the other orders. CONCLUSIONS: Our study demonstrated the genetic variation and evolutionary relationships among 18S rRNA sequences obtained from blood samples collected from various hosts and different geographical regions. Babesia vulpes was identified from raccoon dogs in South Korea. In addition, higher genetic variations were observed among populations of different hosts and geographical origins and, in particular, low connectivity was observed among host populations in the order Carnivora and those in other orders. These results suggest the B. vulpes, a piroplasmid species pathogenic in domestic dogs and wild canines, is genetically and evolutionarily different from B. microti-like parasites.


Subject(s)
Babesia microti , Babesia , Babesiosis , Parasites , Animals , Babesia microti/genetics , Parasites/genetics , Babesiosis/parasitology , RNA, Ribosomal, 18S/genetics , Foxes/parasitology , Phylogeny , Raccoon Dogs
6.
Plants (Basel) ; 11(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35736749

ABSTRACT

The genus Ranunculus includes approximately 600 species and is distributed worldwide. To date, several researchers have investigated the chemical and biological activities of Ranunculus species, and my research team has found them to have antimalarial effects. This review is based on the available information on the traditional uses and pharmacological studies of Ranunculus species. The present paper covers online literature, particularly from 2010 to 2021, and books on the ethnopharmacology and botany of Ranunculus species. Previous studies on the biological activity of crude or purified compounds from Ranunculus species, including R. sceleratus Linn., R. japonicus Thunb., R. muricatus Linn., R. ternatus Thunb., R. arvensis Linn., R. diffusus DC., R. sardous Crantz, R. ficaria Linn., R. hyperboreus Rotlb., and R. pedatus Waldst. & Kit., have provided new insights into their activities, such as antibacterial and antiprotozoal effects as well as antioxidant, immunomodulatory, and anticarcinogenic properties. In addition, the anti-inflammatory and analgesic effects of plants used in traditional medicine applications have been confirmed. Therefore, there is a need for more diverse studies on the chemical and pharmacological activities of highly purified molecules from Ranunculus species extracts to understand the mechanisms underlying their activities and identify novel drug candidates.

7.
Microorganisms ; 10(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35744600

ABSTRACT

Vivax malaria, caused by Plasmodium vivax, remains a public health concern in Central and Southeast Asia and South America, with more than two billion people at risk of infection. Compared to Plasmodium falciparum, P. vivax is considered a benign infection. However, in recent decades, incidences of severe vivax malaria have been confirmed. The P. falciparum erythrocyte membrane protein 1 family encoded by var genes is known as a mediator of severe falciparum malaria by cytoadherence property. Correspondingly, the vir multigene superfamily has been identified as the largest multigene family in P. vivax and is implicated in cytoadherence to endothelial cells and immune response activation. In this review, the functions of vir genes are reviewed in the context of their potential roles in severe vivax malaria.

8.
Phytomedicine ; 102: 154167, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35598522

ABSTRACT

BACKGROUND: New antimalarial agents are needed to combat emerging resistance to the currently available drugs. In the pathology of cerebral malaria, platelets play a central role by binding infected and uninfected red cells and the endothelium. Since Petasites japonicus extract was reported as an effective inhibitor of platelet activation, we examined the antimalarial activities of the P. japonicus extract. PURPOSE: This study aimed to evaluate the impact of P. japonicus extract prepared from whole plants on malarial infection. METHODS: The P. japonicus extract were characterized by high-performance liquid chromatography (HPLC) profiling. Antimalarial activity of the P. japonicus ethanolic extract was evaluated in vitro using chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) P. berghei strains. Also, the in vivo activity of the extract was evaluated in P. berghei-infected mice via oral administration followed by a four-day suppressive test to measure the hematological parameters. In addition, platelet activation signaling induced by the P. japonicus extract in P. berghei infection was evaluated. RESULTS: In HPLC study, catechin, rutin, liquiritin, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, and 4,5-di-O-caffeoylquinic acid were identified in P. japonicus extract. Exposure to the P. japonicus extract significantly inhibited both CQ-sensitive (3D7) and resistant (Dd2) strains of P. falciparum with IC50 values of 8.48 ± 1.70 and 7.83 ± 6.44 µg/ml, respectively. Administration of the P. japonicus extract also resulted in potent antimalarial activities in P. berghei-infected mice with no associated toxicity. The treatment also improved the hematologic parameters. In addition, the survived mice from P. berghei infection exhibited the inhibition of collagen-induced platelet aggregation by attenuated glycoprotein VI (GPVI) downstream signaling. CONCLUSION: P. japonicus extracts promote antimalarial effects both in vitro and in vivo. In addition, the effects appear to be induced by the inhibition of collagen-induced platelet activation related to attenuated GPVI downstream signaling. Further studies to identify and characterize the antimalarial compounds in P. japonicus will promote the development of new drugs.


Subject(s)
Antimalarials , Petasites , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Chloroquine/pharmacology , Mice , Plant Extracts/chemistry , Plasmodium berghei , Plasmodium falciparum , Platelet Activation
9.
Korean J Parasitol ; 60(1): 1-6, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35247948

ABSTRACT

The encystation of Acanthamoeba leads to the development of metabolically inactive and dormant cysts from vegetative trophozoites under unfavorable conditions. These cysts are highly resistant to anti-Acanthamoeba drugs and biocides. Therefore, the inhibition of encystation would be more effective in treating Acanthamoeba infection. In our previous study, a sirtuin family protein-Acanthamoeba silent-information regulator 2-like protein (AcSir2)-was identified, and its expression was discovered to be critical for Acanthamoeba castellanii proliferation and encystation. In this study, to develop Acanthamoeba sirtuin inhibitors, we examine the effects of sirtinol, a sirtuin inhibitor, on trophozoite growth and encystation. Sirtinol inhibited A. castellanii trophozoites proliferation (IC50=61.24 µM). The encystation rate of cells treated with sirtinol significantly decreased to 39.8% (200 µM sirtinol) after 24 hr of incubation compared to controls. In AcSir2-overexpressing cells, the transcriptional level of cyst-specific cysteine protease (CSCP), an Acanthamoeba cysteine protease involved in the encysting process, was 11.6- and 88.6-fold higher at 48 and 72 hr after induction of encystation compared to control. However, sirtinol suppresses CSCP transcription, resulting that the undegraded organelles and large molecules remained in sirtinol-treated cells during encystation. These results indicated that sirtinol sufficiently inhibited trophozoite proliferation and encystation, and can be used to treat Acanthamoeba infections.


Subject(s)
Acanthamoeba castellanii , Sirtuins , Animals , Benzamides , Cell Proliferation , Naphthols , Sirtuins/genetics , Sirtuins/metabolism , Trophozoites/metabolism
10.
Malar J ; 20(1): 288, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34183015

ABSTRACT

BACKGROUND: Plasmodium vivax proteins with variant interspersed repeats (VIR) are the key proteins used by the parasite to escape from the host immune system through the creation of antigenic variations. However, few studies have been done to elucidate their role as targets of immunity. Thus, this study evaluated the naturally-acquired immune response against VIR proteins in vivax malaria-infected individuals in the Republic of Korea (ROK). METHODS: Seven recombinant VIR proteins and two synthetic peptides previously studied in other countries that elicited a robust immune response were used to investigate the antibody and cellular immune response in 681 P. vivax-infected people in ROK. The expression of IgM, IgG, and IgG subclasses against each VIR antigen or against PvMSP1-19 was analysed by ELISA. PvMSP1-19, known as a promising vaccine candidate of P. vivax, was used as the positive control for immune response assessment. Furthermore, the cellular immune response to VIR antigens was evaluated by in vitro proliferative assay, cellular activation assay, and cytokine detection in mononuclear cells of the P. vivax-infected population. RESULTS: IgM or IgG were detected in 52.4% of the population. Among all the VIR antigens, VIR25 elicited the highest humoral immune response in the whole population with IgG and IgM prevalence of 27.8% and 29.2%, respectively, while PvMSP1-19 elicited even higher prevalence (92%) of IgG in the population. As for the cellular immune response, VIR-C2, PvLP2, and PvMSP1-19 induced high cell activation and secretion of IL-2, IL-6, IL-10, and G-CSF in mononuclear cells from the P. vivax-infected population, comparable with results from PvMSP1-19. However, no significant proliferation response to these antigens was observed between the malaria-infected and healthy groups. CONCLUSION: Moderate natural acquisition of antibody and cellular responses in P. vivax-infected Korean malaria patients presented here are similar to that in other countries. It is interesting that the immune response to VIR antigens is conserved among malaria parasites in different countries, considering that VIR genes are highly polymorphic. This thus warrants further studies to elucidate molecular mechanisms by which human elicit immune response to the malaria parasite VIR antigens.


Subject(s)
Antigens, Protozoan/immunology , Immunity, Cellular , Immunity, Humoral , Malaria Vaccines/immunology , Plasmodium vivax/immunology , Adolescent , Adult , Female , Humans , Interspersed Repetitive Sequences , Malaria, Vivax , Male , Middle Aged , Republic of Korea , Vaccines, Synthetic/immunology , Young Adult
11.
Pathogens ; 10(5)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925018

ABSTRACT

In traditional Chinese medicine, Ranunculus japonicus has been used to treat various diseases, including malaria, and the young stem of R. japonicus is consumed as a food in the Republic of Korea. However, experimental evidence of the antimalarial effect of R. japonicus has not been evaluated. Therefore, the antimalarial activity of the extract of the young stem of R. japonicus was evaluated in vitro using both chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains; in vivo activity was evaluated in Plasmodium berghei-infected mice via oral administration followed by a four-day suppressive test focused on biochemical and hematological parameters. Exposure to extracts of R. japonicus resulted in significant inhibition of both chloroquine-sensitive (3D7) and resistant (Dd2) strains of P. falciparum, with IC50 values of 6.29 ± 2.78 and 5.36 ± 4.93 µg/mL, respectively. Administration of R. japonicus also resulted in potent antimalarial activity against P. berghei in infected mice with no associated toxicity; treatment also resulted in improved hepatic, renal, and hematologic parameters. These results demonstrate the antimalarial effects of R. japonicus both in vitro and in vivo with no apparent toxicity.

12.
Parasitol Int ; 80: 102233, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33144194

ABSTRACT

The Plasmodium vivax variant proteins encoded by vir genes are highly polymorphic antigens and are considered as one of key proteins of P. vivax for host immune evasion via antigenic variations. Because genetic diversity of these antigens is a critical hurdle in the development of an effective vaccine, understanding the genetic nature of the vir genes in natural population is important. In this study, we selected four vir genes (vir 4, vir 12, vir 21, and vir 27) previously used for genetic analysis in several studies and evaluated the genetic polymorphisms and phylogenetic relationship of these 4 vir genes in Myanmar P. vivax population. Taken all genetic diversity values, the vir 12 (S = 168, H = 17, Hd = 0.854, Tajima's D value = 2.91524) was the most genetically diverse gene and the vir 4 (S = 9, H = 4, Hd = 0.744, Tajima's D value = -0.49151) was the most conserved gene. All phylogenetic trees showed two clades, and vir 4 and 12 haplotypes from Myanmar were clustered in a distinct clade with those from India and Republic of Korea. These results confirmed the pattern of high genetic polymorphism of vir genes and provided information on vir gene for further functional research and studies focused toward the practical use of vir genes.


Subject(s)
Genes, Protozoan , Plasmodium vivax/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Myanmar , Protozoan Proteins/metabolism
13.
Parasit Vectors ; 13(1): 368, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32698828

ABSTRACT

BACKGROUND: The encystation of Acanthamoeba leads to the development of resilient cysts from vegetative trophozoites. This process is essential for the survival of parasites under unfavorable conditions. Previous studies have reported that, during the encystation of A. castellanii, the expression levels of encystation-related factors are upregulated. However, the regulatory mechanisms for their expression during the encystation process remains unknown. Proteins in the sirtuin family, which consists of nicotinamide adenine dinucleotide-dependent deacetylases, are known to play an important role in various cellular functions. In the present study, we identified the Acanthamoeba silent-information regulator 2-like protein (AcSir2) and examined its role in the growth and encystation of Acanthamoeba. METHODS: We obtained the full-length sequence for AcSir2 using reverse-transcription polymerase chain reaction. In Acanthamoeba transfectants that constitutively overexpress AcSir2 protein, SIRT deacetylase activity was measured, and the intracellular localization of AcSir2 and the effects on the growth and encystation of trophozoites were examined. In addition, the sirtuin inhibitor salermide was used to determine whether these effects were caused by AcSir2 overexpression RESULTS: AcSir2 was classified as a class-IV sirtuin. AcSir2 exhibited functional SIRT deacetylase activity, localized mainly in the nucleus, and its transcription was upregulated during encystation. In trophozoites, AcSir2 overexpression led to greater cell growth, and this growth was inhibited by treatment with salermide, a sirtuin inhibitor. When AcSir2 was overexpressed in the cysts, the encystation rate was significantly higher; this was also reversed with salermide treatment. In AcSir2-overexpressing encysting cells, the transcription of cellulose synthase was highly upregulated compared with that of control cells, and this upregulation was abolished with salermide treatment. Transmission electron microscope-based ultrastructural analysis of salermide-treated encysting cells showed that the structure of the exocyst wall and intercyst space was impaired and that the endocyst wall had not formed. CONCLUSIONS: These results indicate that AcSir2 is a SIRT deacetylase that plays an essential role as a regulator of a variety of cellular processes and that the regulation of AcSir2 expression is important for the growth and encystation of A. castellanii.


Subject(s)
Acanthamoeba castellanii , Parasite Encystment , Sirtuins , Acanthamoeba castellanii/genetics , Acanthamoeba castellanii/growth & development , Acanthamoeba castellanii/metabolism , Amebiasis/drug therapy , Animals , Genes, Protozoan , Glucosyltransferases/drug effects , Glucosyltransferases/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Naphthols/pharmacology , Parasite Encystment/drug effects , Parasite Encystment/genetics , Parasite Encystment/physiology , Phenylpropionates/pharmacology , Phylogeny , Protozoan Proteins/drug effects , Protozoan Proteins/metabolism , Sirtuins/genetics , Sirtuins/metabolism , Transfection/methods , Trophozoites/drug effects , Trophozoites/growth & development , Trophozoites/metabolism
14.
Korean J Parasitol ; 58(3): 309-313, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32615744

ABSTRACT

Human sparganosis is a zoonotic disease caused by infection and migration of the plerocercoid of Spirometra spp. Although sparganosis were reported from most parts of the body, the sparganum parasitizing inside cerebral artery is remarkably uncommon. We report a case of cerebral intravascular sparganosis in an elderly patient with acute ischemic stroke who was diagnosed by retrieving sparganum during mechanical thrombectomy. Finally, the parasites were identified as Spirometra erinaceieuropaei using multiplex PCR and cox1 gene sequencing.


Subject(s)
Cerebral Arteries/parasitology , Sparganosis/parasitology , Sparganum/isolation & purification , Spirometra/isolation & purification , Thrombectomy/methods , Aged, 80 and over , Animals , Asian People , Humans , Male , Sparganosis/diagnostic imaging , Sparganosis/transmission , Sparganum/genetics , Spirometra/genetics , Stroke/etiology , Stroke/therapy
15.
Pathogens ; 8(4)2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31817729

ABSTRACT

The present study aimed to detect and characterize Borrelia spp. in ticks attached to dogs in Korea. Overall, 562 ticks (276 pools) attached to dogs were collected and tested for Borrelia infection by PCR targeting the 5S-23S rRNA intergenic spacer region (rrf-rrl). One tick larva (pool level, 0.4%; individual level, 0.2%) was confirmed by sequencing Borrelia garinii, a zoonotic pathogen. For molecular characterization, the outer surface protein A (ospA) and flagellin genes were analyzed. Phylogenetic ospA analysis distinguished B. garinii from B. bavariensis, which has been recently identified as a novel Borrelia species. On the other hand, phylogenetic analysis showed that single gene analysis involving rrf-rrl or flagellin was not sufficient to differentiate B. garinii from B. bavariensis. In addition, the B. garinii-infected tick was identified as Ixodes nipponensis by sequencing according to mitochondrial 16S rRNA and the second transcribed spacer region. To our knowledge, this is the first study to report the molecular detection of B. garinii in I. nipponensis parasitizing a dog in Korea. Continuous monitoring of tick-borne pathogens in ticks attached to animals is required to avoid disease distribution and possible transmission to humans.

16.
Korean J Parasitol ; 57(4): 417-422, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31533409

ABSTRACT

From October 2015 to August 2018, tapeworm proglottids were obtained from 10 patients who were residents of Daegu and Gyeongbuk provinces and had a history of raw beef consumption. Most of them had no overseas travel experience. The gravid proglottids obtained from the 10 cases had 15-20 lateral uterine branches. A part of internal transcribed spacer 1 (ITS1) DNA of the 10 cases, amplified by polymerase chain reaction (PCR) and digested with AleI restriction enzyme, produced the same band pattern of Taenia saginata, which differentiated from T. asiatica and T. solium. Sequences of ITS1 and cytochrome c oxidase subunit 1 (cox1) showed higher homology to T. saginata than to T. asiatica and T. solium. Collectively, these 10 cases were identified as T. saginata human infections. As taeniasis is one of the important parasitic diseases in humans, it is necessary to maintain hygienic conditions during livestock farming to avoid public health concerns.


Subject(s)
DNA, Ribosomal Spacer/analysis , Taenia saginata/isolation & purification , Taeniasis/diagnosis , Adult , Aged , Animals , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/genetics , Female , Humans , Male , Middle Aged , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Republic of Korea , Restriction Mapping , Sequence Homology , Taenia saginata/classification , Taenia saginata/genetics , Taeniasis/parasitology , Young Adult
17.
Korean J Parasitol ; 56(5): 409-418, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30419726

ABSTRACT

Acanthamoeba spp. are free-living protozoa that are opportunistic pathogens for humans. Cysteine proteases of Acanthamoeba have been partially characterized, but their biochemical and functional properties are not clearly understood yet. In this study, we isolated a gene encoding cysteine protease of A. castellanii (AcCP) and its biochemical and functional properties were analyzed. Sequence analysis of AcCP suggests that this enzyme is a typical cathepsin L family cysteine protease, which shares similar structural characteristics with other cathepsin L-like enzymes. The recombinant AcCP showed enzymatic activity in acidic conditions with an optimum at pH 4.0. The recombinant enzyme effectively hydrolyzed human proteins including hemoglobin, albumin, immunoglobuins A and G, and fibronectin at acidic pH. AcCP mainly localized in lysosomal compartment and its expression was observed in both trophozoites and cysts. AcCP was also identified in cultured medium of A. castellanii. Considering to lysosomal localization, secretion or release by trophozoites and continuous expression in trophozoites and cysts, the enzyme could be a multifunctional enzyme that plays important biological functions for nutrition, development and pathogenicity of A. castellanii. These results also imply that AcCP can be a promising target for development of chemotherapeutic drug for Acanthamoeba infections.


Subject(s)
Acanthamoeba castellanii/enzymology , Cysteine Proteases/genetics , Cysteine Proteases/physiology , Acanthamoeba castellanii/metabolism , Acanthamoeba castellanii/pathogenicity , Amino Acid Sequence , Base Sequence , Cysteine Proteases/chemistry , Cysteine Proteases/metabolism , Hydrogen-Ion Concentration , Lysosomes , Trophozoites/metabolism
18.
Vet Rec ; 183(16): 504, 2018 10 27.
Article in English | MEDLINE | ID: mdl-30242082

ABSTRACT

This study evaluated the prevalence of Eimeria species, particularly E bovis, E zuernii and E auburnensis that are pathogenic to cattle, in faecal samples collected from cattle with diarrhoea reared in the Republic of Korea by using microscopy and PCR. In addition, the prevalence of Eimeria species was analysed according to age, type of cattle, region, season and nature of diarrhoea. Overall, Eimeria species were identified in 279 of the 1261 (22.1 per cent) faecal samples through microscopy, and statistical analysis revealed a lower prevalence in calves aged than three weeks or less and higher prevalence in cattle with haemorrhagic diarrhoea. Of the 279 microscopy-positive samples, E bovis, E zuernii and E auburnensis were identified in 100 (7.9 per cent), 83 (6.6 per cent) and 27 (2.1 per cent) faecal samples, respectively, by using PCR. To the authors' knowledge, this study is the first to apply PCR for epizootiology of bovine coccidiosis.


Subject(s)
Cattle Diseases/parasitology , Coccidiosis/veterinary , Diarrhea/veterinary , Eimeria/isolation & purification , Age Factors , Animals , Cattle , Cattle Diseases/epidemiology , Coccidiosis/epidemiology , Diarrhea/epidemiology , Diarrhea/parasitology , Feces/parasitology , Polymerase Chain Reaction/veterinary , Prevalence , Republic of Korea/epidemiology , Seasons
19.
J Vet Med Sci ; 80(9): 1473-1478, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30101828

ABSTRACT

The purpose of this study was to assess tick-borne pathogenic infections in 42 wild Korean water deer (KWD) and 26 farmed elk in the Gyeongbuk and Gangwon Provinces of Korea. Among the 42 wild KWD tested, the eighteen (42.9%) and five (11.9%) samples tested positive for Anaplasma phagocytophilum and A. bovis, respectively, by PCR and DNA sequencing. All positive samples were only from wild KWD. All samples were negative for other tick-borne pathogens tested. Detected 16S rRNA sequences of A. phagocytophilum and A. bovis showed 98.6-99.8% and 94.4-100% identity to those of sequences in GenBank, respectively. Because few studies have examined tick-borne pathogens in wild animals, appropriate control programs and studies are needed to prevent pathogen transmission.


Subject(s)
Anaplasma/isolation & purification , Deer , Phylogeny , Ticks/microbiology , Anaplasma/classification , Animals , Deer/microbiology , Deer/parasitology , RNA, Ribosomal, 16S , Republic of Korea , Water
20.
Acta Trop ; 176: 300-304, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28847673

ABSTRACT

Allelic diversity leading to multiple gene polymorphisms of vivax malaria parasites has been shown to greatly contribute to antigenic variation and drug resistance, increasing the potential for multiple-clone infections within the host. Therefore, to identify multiple-clone infections and the predominant haplotype of Plasmodium vivax in a South Korean population, P. vivax merozoite surface protein-1 (PvMSP-1) was analyzed by pyrosequencing. Pyrosequencing of 156 vivax malaria-infected samples yielded 97 (62.18%) output pyrograms showing two main types of peak patterns of the dimorphic allele for threonine and alanine (T1476A). Most of the samples evaluated (88.66%) carried multiple-clone infections (wild- and mutant-types), whereas 11.34% of the same population carried only the mutant-type (1476A). In addition, each allele showed a high frequency of guanine (G) base substitution at both the first and third positions (86.07% and 81.13%, respectively) of the nucleotide combinations. Pyrosequencing of the PvMSP-1 42-kDa fragment revealed a heterogeneous parasite population, with the mutant-type dominant compared to the wild-type. Understanding the genetic diversity and multiple-clone infection rates may lead to improvements in vivax malaria prevention and strategic control plans. Further studies are needed to improve the efficacy of the pyrosequencing assay with large sample sizes and additional nucleotide positions.


Subject(s)
Alleles , Malaria, Vivax/parasitology , Merozoite Surface Protein 1/genetics , Plasmodium vivax/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Humans , Merozoite Surface Protein 1/isolation & purification , Plasmodium vivax/isolation & purification , Protozoan Proteins/isolation & purification , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL
...